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Abstract. The structure of the QCD gluonic cascade in configuration space is investigated. The explicit
form of the inclusive single particle density matrix and single particle density in configuration space trans-
verse coordinates is derived in the double logarithmic approximation (DLA) of QCD. The possible simpli-
fication of the multiparton density matrix formalism for DLA approach is found and discussed.

1 Introduction

The interest of the configuration space structure of a had-
ronic source has appeared primarily in intensity interfer-
ometry [1]. The technique was developed originally to esti-
mate the dimension of distant astronomical objects. Since
that time it has seen widespread application in subatomic
physics, in particular in analysis of elementary particle
collisions [2]. The standard HBT procedure involves in-
troducing an ansatz describing the geometry of the par-
ticle source, on the basis of a physical model. Then it
investigates its multiparticle characteristcs in momentum
space. Many models of hadron production based on some
phenomenological or theoretical constraints [2] have been
considered; however, the question as to what is the config-
uration space structure of the QCD cascade when derived
explicitly from the fundamental theory has not been ad-
dressed so far.

Recently, several groups have analysed in great detail
the multiparton distributions in the QCD gluonic cascades
[3]. The results of their investigations show that perturba-
tive QCD [4] provides a powerful framework not only for
the description of hard quark and gluon jets but also of
much softer multiparticle phenomena. Although not un-
derstood theoretically, the hypothesis of parton-hadron
duality [5] provides an apparently successful link between
theoretical parton distributions and observed particle spec-
tra. This prescription was extensively tested in single par-
ticle spectra (and total multiplicities) and found to be in a
good agreement with the available data (see e.g. [6]). Re-
cently, there have appeared indications that it may also
work for multiparticle correlations [7]. These unquestion-
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able successes invite one to study further consequences of
the theory for processes of particle production.

At this point we would like to notice that, if one wants
to exploit fully the quantum-mechanical aspects of the
QCD cascade, it is necessary to study at first the multi-
parton density matrix. The multiparticle distributions
calculated so far give only diagonal terms of the density
matrix and thus represent a rather restricted (although
very important) part of the information available from
the theory.

It is perhaps important to stress that in contrast to
what is usually believed, the interest in studying the mul-
tiparticle density matrix is not purely academic. Multipar-
ticle densities in configuration space cannot be observed
directly. However, as suggested in [8], the density matrix
allows one to obtain the multiparticle Wigner functions,
as well, and this allows one to make predictions about
the shape and range of the HBT interference with clear
experimental consequences.

In my previous paper [9] I investigated the multiparti-
cle density matrix (DM) of the gluonic cascade produced
in e+e− collision in the framework of double logarithmic
(DLA) approximation [4], [10] of QCD. I proposed a gen-
erating functional to obtain integral equations for the mul-
tiparticle density matrix in the quasi-diagonal limit, i.e. if
the energies and emission angles of particles are close to
each other.

Here I will be presenting the technique for extracting
physical information from the density matrix approach,
deriving the explicit form of inclusive single particle den-
sity matrix and single particle density in configuration
space. For the sake of simplicity, I will be restricting my-
self to a discussion of particle density dependence on the
transverse space coordinate xT . In solving the problem,
first I will discuss the derivation of the inclusive single
particle density matrix din

P (k′, k). I will prove that the
terms in din

P (k′, k) which do not vanish for k = k′ are
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leading in the double logaritmic perturbative expansion
when αS → 0, momentum of quark (antiquark) P gener-
ating the gluonic cascade is large:
P → ∞, so that αS lnP → 0, and the double logarith-
mic contributions of the form αS ln2 P = const dominate.
Taking into account these leading terms will allow me to
obtain the explicit analytic form of the density matrix,
and consequently the explicit form of the single particle
density in configuration space. Finally, I will be analysing
the physical properties of inclusive single particle density,
and I hope to find them in agreement with intuitive phys-
ical expectations.

2 Density matrix formalism

2.1 Definition of the density matrix

In this paper I will concentrate on the single particle den-
sity in configuration space. I will be discussing it in rela-
tion to the QCD-parton cascade within the framework of
double logarithmic approximation (DLA), using the den-
sity matrix formalism presented in [9]. Hence in this sec-
tion I will recall the definition of the density matrix for
a particle production process, and show the relation be-
tween the density matrix and particle density in config-
uration space. Our assumption is that all the produced
particles are real, i.e. they are on a mass shell. If the pro-
duction of m particles can be realized in different ways
represented by a sample of Feynman diagrams, then the
exclusive m-particle density matrix equals the product of
total production amplitude S(k1, . ., km) and its complex
conjugate S∗(k′

1, . ., k
′
m) as:

dex(k′
1, . ., k

′
m; k1, . ., km) = S∗(k′

1, . ., k
′
m)S(k1, . ., km);

(1)

where the total amplitude S(k1, . ., km) is the sum of all
contributions S(D) from Feynman diagrams (D) including
phase space factors:

S(k1, . ., km) =
∑
D

S(D)(k1, . ., km)
m∏

i=1

(2ωki)
−1/2. (2)

For inclusive analysis one constructs the m-particle den-
sity matrix as a series of integrated n-particle exclusive
densities in the form:

din(k′
1, . .,k

′
m;k1, . .,km)

=
∞∑

n=m

1
(n − m)!

∫
[dk]m+1...n

×dex(k′
1, . .,k

′
m,km+1, . .,kn;k1, . .,kn); (3)

where [dk]i...j ≡ d3ki. .d
3kj . This construction scheme im-

plies, that the diagonal elements of the density matrix
are equal to particle densities in momentum space. There
is also an obvious relation between the density matrix
and particle density in real space. Remembering, that the

space-time multiparticle amplitude is the on-mass-shell
Fourier transform of the momentum amplitude, i.e.

S(x1, . ., xm) =
∫

[dk]1...meiωk1 t1−ik1x1 .

.eiωkm tm−ikmxmS(k1, . ., km); (4)

where ωki
denotes the energy of the ith produced particle,

for the multiparticle density ρex/in(x1, . ., xm) we get the
relation:

ρex/in(x1, . ., xm)

=
1

(2π)3m

×
∫

[dk]1...m[dk′]1...m dex/in(k′
1, . ., k

′
m; k1, . ., km) (5)

×e
i(ωk1−ωk′

1
)t1−i(k1−k′

1)x1
. .e

i(ωkm −ωk′
m

)tm−i(km−k′
m)xm ;

where the factor 1
(2π)3m was introduced to get the proper

normalization:∫
[dx]1...mρex/in(x1, . ., xm)

=
∫

[dk]1...mρex/in(k1, . ., km). (6)

2.2 Parton cascade in the double logarithmic
approximation

The double logarithmic approach in momentum space [4],
[10] gives a good qualitative description of the structure
of the gluonic cascade. It accounts only for the leading DL
contributions to the multiparticle cross section. Although
emitted soft gluons violate the energy and momentum con-
servation rules, however, at high energies the approxima-
tion reproduces quite well the selfsimilar structure of the
gluon radiation. Let us consider in the framework of DLA
the gluonic cascade generated in e+e− collision. Multipar-
ticle exclusive amplitude S

(D)
e1. .em(k1, . ., km), describing the

production of m soft gluons:

S(D)
e1. .em

(k1, . ., km)

= (−1)n e− w(P )
2

m∏
i=1

MPi(ki) e− w(ki)
2 ; (7)

is a product of the m emission factors:

MPi(ki) = gS
(ei · Pi)
(ki · Pi)

ΘPi(ki) GPi ; (8)

where:
gS =

√
4παs,

n is the number of gluons emitted of quark (antiquark),
ki = (ωi,ki) denotes the 4-momentum of the ith soft
gluon,
ei ≡ e

(j)
i , j = 0, . . . , 3 describes its polarization,

Pi is the 4-momentum of the parent of the ith gluon,
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Fig. 1. Feynman diagram for the production of m gluons in
DLA, where P denotes the 4-momentum of the initial q(q̄) and
ki denotes the 4-momentum of the ith produced gluon

GPi denotes the color factor for the given vertex of the
tree diagram D, and can be conveniently represented as
a tree diagram (see Fig. 1). Gluon emissions are not in-
dependent. Radiated particles have the memory of their
parton parent, and of the previous parton splitting off its
parent line. This dependence restricts the phase space of
the produced gluon, and it is included in the form of a
generalized step function ΘPi

(ki):

ΘP (k) := {k0 ≡ ω < P 0, θkP < θ, ωθkP > Q0}; (9)

where P is the momentum of the parent of a given parton
k, θ denotes the emission angle of the previous parton
splitting on the P−line, and Q0 is a cut-off parameter.
Virtual corrections appear as a radiation Sudakov factor
e− w(P )

2 , where:

w(P ) =
∫

d3k 〈A∗
P (k)AP (k)〉(e) (10)

denotes the total probability of emission of a gluon from
the parent P, averaged over physical transverse polariza-
tions e1, e2. AP (k) is given by:

AP (k) =
MP (k)√

2ωk
. (11)

It should also be emphasized that produced gluons are
real (on-mass-shell) particles, so the energy ωk of a gluon
of momentum k can be approximated as:

ωk =| k |≡ k. (12)

Summing of the color factors G over the color indices gives
the result:

GPiG
∗
Pi

=
{

CF dla Pi = P
CV dla Pi 6= P ; (13)

where P denotes the 4-momentum of the quark (anti-
quark) which initializes the gluonic cascade.

In DLA different tree diagrams come from different
non-overlapping kinematic regions, and do not interfere.
Therefore, to calculate exclusive and inclusive multigluon
densities it is enough to sum up incoherently the squares
of amplitudes (7). Hence one obtains the exclusive density
ρex

P (k1, . .,km) in the form:

ρex
P (k1, . .,km) (14)

= e−w(P )
∑
D

m∏
i=1

〈A∗
Pi

(ki)APi
(ki)〉(ei) e−w(ki);

Fig. 2. Generating functional (19) as a diagram series

parametrized by the momentum P of the quark (anti-
quark) which initializes the cascade. Multigluon inclusive
density ρin

P (k1, . .,km) follows from (3) as:

ρin
P (k1, . .,km) =

∞∑
n=m

1
(n − m)!

(15)

×
∫

[dk]m+1...n ρex
P (k1, . .,kn).

Introducing the method of the generating functional (GF)
(see [4] and references therein) allows us to perform the
summation over diagrams in (14) and (15) in a very con-
venient way. While constructing the generating functional
ZP [u], one applies explicitly the selfsimilarity property of
the gluonic cascade. As a final result one obtains the re-
cursive master equation in the form:

ZP [u] = e−w(P ) exp(
∫

d3k 〈A∗
P (k)AP (k)〉(e) u(k)Zk[u]).

(16)
It can be proved [4] that equation (16) reproduces contri-
butions of all tree diagrams D, and allows us to express
multigluon densities ρin

P (k1, . .,km) and ρex
P (k1, . .,km) as:

ρex
P (k1, . .,km) =

δm

δu1 . . . δum
ZP |{u=0}, (17)

ρin
P (k1, . .,km) =

δm

δu1 . . . δum
ZP |{u=1}; (18)

where ui denotes the probing function u(ki) and the func-
tional derivative δ

δui
denotes δ

δu(ki)
respectively.

We would like to emphasize the simplicity of the GF
approach. Especially for inclusive densities the method al-
lows us to skip the complicated summation procedure, and
to express the required distribution in a simple, compact
form (for details see [11]).

2.3 Density matrix in the DLA formalism

The DLA formalism in momentum space gives a good de-
scription of the structure of the gluonic cascade. The GF
scheme allows to construct multigluon densities in a sim-
ple way. Since the method works so well for multiparticle
distributions, one can expect to apply it successfully for
other multiparticle observables. Below we briefly sum up
the main results from [9] concerning calculation of the
multiparticle density matrix in the framework of double
logarithmic approximation.

First we derive the general expression for the exclusive
and inclusive density matrices dex

P (k′
1, . .,k

′
m;k1, . .,km)
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Fig. 3. Redefined kinematical regions in DLA
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Fig. 4. Interference between different diagrams for dex
P (k′

1, k1).
Remark: diagrams a and b are identical except of the position
of k1 (k′

1) leg

and din
P (k′

1, . .,k
′
m;k1, . .,km). The task looks quite com-

plicated because in this case the interference between dif-
ferent diagrams in (1), generally does not vanish. Let us
define two functionals, ZP [u] and Z∗

P ′ [w] (see Fig. 2), which
generate the sum of all tree amplitudes and the sum of
their complex conjugates respectively:

ZP [u] = e−w(P )/2 exp(
∫

d3kAP (k)u(k)Zk[u]),

Z∗
P ′ [s] = e−w(P ′)/2 exp(

∫
d3kA∗

P ′(k)s(k)Z∗
k [s]). (19)

The multigluon density matrices can be then expressed as:

dex
P (k′

1, . .,k
′
m;k1, . .,km)

=
δm

δs1′ . . . δsm′

δm

δu1 . . . δum

×ZP [u]Z∗
P ′ [s] |{u=s=0},P=P ′ , (20)

din
P (k′

1, . .,k
′
m;k1, . .,km)

=
δm

δs1′ . . . δsm′

δm

δu1 . . . δum

×ZP [u]Z∗
P ′ [s] |{u= δ

δs ,s=0},P=P ′ . (21)

Equation (21) is, in fact, a complicated integral equation.
The difficulty of the diagram summation does not dis-
appear there. It is only hidden in the compact form of
(21). However, we remember that in the above formula
we have taken into account interference between all dif-
ferent graphs D and D’. And detailed analysis gives the
result that in DLA not all the diagrams mix up: one can
distinguish some interference classes. However, at the gen-
eral level we did not succeed in formulation of such a GF
which would take this fact into account.

Nevertheless, we do not need the most general form
of the density matrix. We are interested in its behaviour
when the differences of momenta | k1 − k′

1 |, . . ., | km −
k′

m | are small, since we expect that large momentum dif-
ferences will not contribute to Fourier transforms [12]. It
can be shown that within this limit interferences between
different diagrams vanish, and one sums up only ”squared”
contributions from identical graphs. In fact, from the anal-
ysis of the diagrams contributing to single particle density
matrix dex

P (k′
1, k1), it has been possible to prove (see Ap-

pendix A) that interference between different diagrams
appears only if either energies or emission angles of pro-
duced particles are strongly ordered: ω1 � ω1′ (ω1 � ω1′)
or θ1P � θ1′P (θ1P � θ1′P ). This statement can be gen-
eralized for any multiparticle density matrix (for proof see
[9]).

Hence in our approximation we exclude mixing up dif-
ferent diagrams, and sum up only the squared contribu-
tions from identical ones. The exclusive and inclusive den-
sity matrices then take the simpler form:

dex
P (k′

1, . .,k
′
m;k1, . .,km)

=
∑
D

m∏
i=1

(4ωk′
i
ωki

)−1/2 (22)

×〈S(D)
e1. .em

(k′
1, . . . , k

′
m)S(D)

e1. .em
(k1, . . . , km)〉(e1. .em),

din
P (k′

1, . .,k
′
m;k1, . .,km)

=
∞∑

n=m

1
(n − m)!

∑
D

∫
[dk]m+1...n

×
m∏

i=1

(4ωk′
i
ωki

)−1/2
n∏

j=m+1

(4ωkj
ωkj

)−1/2

×〈S(D)
e1. .en

(k′
1, . . . , k

′
m, km+1, . . . , kn)
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×S(D)
e1. .en

(k1, . . . , kn)〉(e1. .en). (23)

The summation in (22), (23) over D can be easily per-
formed using the generating functional which reproduces
only contributions of identical tree diagrams. In [9] I pro-
posed a master equation for such a generating functional
(GF) ZP ′P [u(k′, k)]. It accounts only for the contributions
of “diagonal” diagrams, and generates the exclusive and
inclusive density matrix as:

dex
P (k′

1, . .,k
′
m;k1, . .,km)

=
δm

δum′,m. .δu1′,1
ZP ′P |{u=0},P=P ′ , (24)

din
P (k′

1, . .,k
′
m;k1, . .,km)

=
δm

δum′,m. .δu1′,1
ZP ′P |{u=δ3(l′−l)},P=P ′ . (25)

The explicit form of its master equation, and the other for-
mulae needed for further calculations are presented below.
The GF reads:

ZP ′P [u] = e−W (P ′,P )
∞∑

n=0

1
n!

×
∫

[dk′]1...n [dk]1...n u(k′
1, k1). .u(k′

n, kn)

×〈A∗
P ′(k′

1)AP (k1)〉(e1). .〈A∗
P ′(k′

n)AP (kn)〉(en)

×Zk′
1k1 [u]. .Zk′

nkn
[u]P1′,. .,n′;1,. .,n; (26)

where the function P1′,. .,n′;1,. .,n provides the requested
parallel angular ordering (see Fig. 5) for n particles in the
form:

P1′,. .,n′;1,. .,n =
∑

(i1,. .,in)∈Perm(1,. .,n)

×Θ(θk′
i1

P ′ > . . > θk′
in

P ′)

×Θ(θki1P > . . > θkin P ); (27)

the product of the single particle amplitudes
〈 A∗

P ′(k′)AP (k)〉(e) averaged over gluon polarizations reads:

〈A∗
P ′(k′)AP (k)〉(e)

≡ AP ′P (k′, k)

=
4g2

S

2π
G∗

P ′GP
1√

4ω′3ω3

1
θPkθP ′k′

ΘP ′(k′)ΘP (k); (28)

and the radiation factor is given by:

W (P ′, P ) =
w(P ′) + w(P )

2
. (29)

The other notations are the same as in Sect. 2.2.
Generating functional (26) describes the sequence of

“emissions”: 〈A∗
P ′(k′)AP (k)〉(e) of two particles k, k′ from

two parents P , P ′. If the profile function u(l′, l) is equal
to 0 and δ3(l′ − l) respectively, then the functional ZP ′P
takes the form:

ZP ′P [u = 0] = e−W (P ′,P ),

ZPP [u = δ3(l′ − l)] = 1. (30)

Z

Z

P

P

P’

P’

1

1

1 1

1’

1’ 1’
1’

P PP
P

P’ P’P’P’
1
2 + + + + 

A )(

[
[

[ ]
]

] ( )
,

u

u = e
-w(P’,P)

×
...

2 2

2’ 2’

}

} }

parallel angular 
ordering (A O)

1’1

_

Fig. 5. Master equation for generating functional (26) rep-
resented as a diagram series (for details see [9]). Function
P1′,...,n′;1,...,n introduces the parallel angular ordering (AO)

For the profile function of the form u(l′, l) = v(l) δ3(l′ − l)
and P = P ′ our ZP ′P [u] reduces to functional (16), as
expected:

ZPP [u(l′, l) = v(l) δ3(l′ − l)] = ZP [v(l)]. (31)

2.4 Single particle density matrix. Leading terms

From relations (25), (26) one obtains a simple integral
equation for the inclusive single particle density matrix:

din
P (k′; k) =

∫
d3sAPP (s, s)din

s (k′; k) (32)

+fP (k′, k)APP (k′, k) Zk′,k[u = δ3(l′ − l)];

where fP (k′, k) equals

fP (k′, k) = e−g2
SCF |ln2 θkP P

Q0
−ln2 θ

k′P
P

Q0
|. (33)

Introducing the notation:

gP (k′, k) ≡ fP (k′, k) APP (k′, k)
×Zk′,k[u = δ3(l′ − l)]; (34)

we may write the symbolical solution din
P (k′, k) of (32) in

the form:

din
P (k′, k) =

∞∑
n=0

∫
d3s1 . . . d3sn APP (s1, s1) . . .

. . . Asn−1sn−1(sn, sn) gsn
(k′, k). (35)

We present (32), (35) as a final result obtained in [9]. The
exact solution of din

P (k′, k) and its detailed properties will
be discussed below. We may replace APP (s, s) in (35) with
its explicit form taken from (28):

din
P (k′, k) =

∞∑
n=0

(2b)n

∫
ds1

s1

×
∫

dΩs1

2πθ2
P1

ΘP (s1)
∫

dsn

sn
(36)

×
∫

dΩsn

2πθ2
n−1,n

Θsn−1(sn) gsn
(k′, k);
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where
∫

dΩsi denotes the angular integration over the di-
rection of vector si, θi,j ≡ θsi,sj and b ≡ g2

SCF . Factor
gs(k′, k) defined by expression (34), reads:

gS(k′, k)

=
2b

2π

1√
k3k′3

1
θSkθSk′

ΘS(k′)ΘS(k)

× e−b|ln2 θkSS

Q0
−ln2 θ

k′S
S

Q0
| e−b′/2(ln2 kθkS

Q0
+ln2 k′θ

k′S
Q0

)

×
∞∑

n=0

(2b′)n

∫
[dk]1...n

1
2πθk1θk′1

. .
1

2πθknθk′n

1
k3
1
. .

1
k3

n

× Θ(θk1 > . . > θkn)Θ(θk′1 > . . > θk′n)
× Θk′(1). .Θk′(n)Θk(1). .Θk(n); (37)

where b′ ≡ g2
SCV . The term which dominates in (37) in the

double logarithmic approximation: b → 0 (b ∝ αS), P →
∞, b ln P

Q0
→ 0, and b ln2 P

Q0
= const, has the explicit

form (for details see Appendix B):

g
(1)
S (k′, k) =

2b

2π

1√
k3k′3

1
θSk′θSk

ΘS(k′) ΘS(k). (38)

Consequently, one may check (see Appendix B) that this
term iterated in (37) produces the DLA leading contribu-
tion to the density matrix din

P (k′, k). Hence we may write
finally that:

din
P (k′, k) DLA=

∞∑
n=0

(2b)n

∫
ds1

s1

∫
dΩs1

2πθ2
P1

ΘP (s1)

. . .

∫
dsn

sn

∫
dΩsn

2πθ2
n−1,n

Θsn−1(sn)

g(1)
sn

(k′, k). (39)

The above result simplifies significantly the single particle
density matrix approach [9]. We apply it in Sect. 4.2. so
as to improve calculation of the single particle density in
mixed coordinates.

3 DLA in configuration space

3.1 Fourier transform in transverse coordinates

The DLA soft parton cascade starts from the initial parton
of momentum P. Momenta of all particles produced from
parton P refer to the P direction: they depend on the
transverse and longitudinal momenta kT and kL (see e.g.
[4], [13]) taken with respect to the P axis.

This dependence influences the structure of the cas-
cade in configuration space. The single particle amplitude
SP (x) (4) takes the form:

SP (x) =
∫

d3k eiωt−ikxSP (k)

=
∫

dkLd2kT eiωt−ikxSP (k); (40)

where SP (k) (SP (x) ) denotes the amplitude to produce a
single particle with the momentum k (at the space-time
coordinate x) from the initial particle of momentum P,
and the 3-dimensional product kx reads:

kx = kL xL + kT xT; (41)

where indices L and T denote longitudinal and transverse
components of momenta and coordinates with respect to
the P axis.

Using the approximation of small emission angles θ �
1, consequently neglecting terms of order Pθ2 and restrict-
ing to finite, small time intervals t � (Pθ2)−1 one may
write approximate relations:

kL ≈ ω = | k | ≡ k (42)
kT ≈ kθPk (43)

Hence (40) can be rewritten as the product of 2 sepa-
rate Fourier transforms: 1-dimensional FT of (kL, t−xL),
and 2-dimensional FT of (kT,−xT) in the form:

SP (xL,xT, t) =
∫

dk eik(t−xL)

×
∫

d2kT e−ikTxTSP (k,kT). (44)

Equation (44) gives us a good tool to investigate the space-
time structure of DLA. We may now concentrate on par-
ticle distribution in transverse coordinates, which is phys-
ically the most interesting case. For the sake of simplicity,
let us consider for t = 0 the single particle amplitude
SP (k,xT) in mixed transverse space and longitudinal mo-
mentum coordinates [13] defined as:

SP (k,xT, 0) =
∫

d2kT e−ikTxTSP (k,kT). (45)

For the single particle exclusive distribution ρex
P (k,xT, 0),

defined as the amplitude square:

ρex
P (k,xT, 0) = | SP (k,xT, 0) |2; (46)

one obtains simple expression in the form:

ρex
P (k,xT, 0) =

1
(2π)2

∫
d2kT d2k′

T

×e−i(kT−k′
T)xT dex

P (k,k′
T; k,kT). (47)

Relation (47) holds also for inclusive single particle den-
sity:

ρin
P (k,xT, 0) =

1
(2π)2

∫
d2kT d2k′

T

×e−i(kT−k′
T)xT din

P (k,k′
T; k,kT); (48)

and can be easily generalized for the multiparticle case. In
this paper we study the inclusive single particle density
in mixed coordinates ρin

P (k,xT, 0) for the QCD gluonic
cascade in DLA approximation.
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Fig. 6. Function ρin
P (k) from (49)

vs kT ≡| kT | in Q0 units for pa-
rameters b = 0.25, P/Q0 = 243,
θ = 1, k/Q0 = 128, chosen fol-
lowing [11]. The power fit reads
ρin

P (k) = ( kT
Q0

)−1.74 ∗ 0.00065 Q−3
0 .

Plot a with the logarithmic scale for
the vertical axis, plot b with the
logarithmic scale for both vertical
and horizontal axes

4 Inclusive single particle density in
configuration space

4.1 Physics

Momentum and configuration space description of a par-
ticle source are related to each other by the Fourier trans-
form. Therefore one expects to extract from the observ-
ables in momentum space some qualitative information
about their behaviour in configuration space. This obser-
vation applies, of course, to single particle density. In the
DLA approach the inclusive single particle density ρin

P (k)
[11] reads:

ρin
P (k)

=
2b

2π

1
kk2

T

∞∑
n=0

(2b)n

(n!)2
lnn(

P

k
)lnn(

kT

Q0
) ΘP (k)

=
2b

2π

1
kk2

T

I0

(√
8b ln(

P

k
)ln(

kT

Q0
)

)
ΘP (k); (49)

where b ≡ g2
SCF . For constant k the ρin

P (k) is concen-
trated around P direction (see Fig. 6) (skipping for now
the ΘP (k) limitations). We expect, that the single particle
distribution ρin

P (k,xT , 0) (48) in configuration space will
be concentrated around the P direction, as well. However,
it has to obey the uncertainty principle. Since there are
cut-offs of form (9) in density matrix, its Fourier transform
will contain some oscillations, due to the restricted inte-
gration region. Moreover, relation (6) implies, that both
densities ρin

P (k) and ρin
P (k,xT, 0) have the same normal-

ization, if integrated over d3k and dk d2xT respectively.
Remembering the above remarks, we propose now a

technique for deriving the explicit form of inclusive single
particle density in configuration space.

4.2 Single particle density

We may calculate the single particle density ρin
P (k,xT, 0)

(48) as a Fourier transform of DLA density matrix (39).

Let us make the transverse Fourier transform of both sides
of (39). We obtain:

ρin
P (k,xT(P), 0)

DLA=
1

(2π)2

∫
d2kT (P )d

2k′
T (P )e

−i(kT (P )−k′
T (P ))xT (P )

×
∞∑

n=0

(2b)n

∫
ds1

s1

∫
dΩs1

2πθ2
P1

ΘP (s1)

. . .

∫
dsn

sn

∫
dΩsn

2πθ2
n−1,n

Θsn−1(sn)

× g(1)
sn

(k,k′
T(S); k,kT(S)); (50)

where indices T(P),T(S) correspond to the reference frame
with the z−axis placed along the P (S) direction. The
term of the lowest order (n = 0) in (50) which is leading
in DLA approximation takes then the form:

ρ
in (1)
P (k,xT(P), 0)

=
1

(2π)2

∫
d2kT (P )d

2k′
T (P )e

−i(kT(P)−k′
T(P))xT(P)

×g
(1)
P (k,k′

T(S); k,kT(S)) (51)

=
2b

2π
k Θ(

Q0

θ
< k < P )(

∫ θ

Q0
k

dθPkJ0(xT kθPk))2.

The numerical plot of (51) is presented in Fig. 7. There is
a limiting maximum value for xT = 0, as expected, and
for large xT the function has a power decrease with the
best fit exponent x−3.07

T . The result confirms our intuitive
analysis from Sect. 4.1. The term ρ

in (1)
P (k,xT(P), 0) is con-

centrated around the P direction, however stronger than
ρ

in (1)
P (k,kT) from (49).

Derivation of terms of an arbitrary order in expansion
(39) is more complicated. To proceed, let us analyse the
last part of (39). It reads:∫

dsn

sn

∫
dΩn

2πθ2
n−1,n

Θn−1(sn) g(1)
n (k,k′

T(S); k,kT(S))
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Fig. 7. Function ρ
in,(1)
P (k,xt, 0)

from (52) vs. xT ≡| xT | for pa-
rameters as in Fig. 6. The power fit
reads ρin

P (k,xT , 0) = (Q0xT )−3.07 ∗
(4.0E −05) Q0. Plot a with the log-
arithmic scale for the vertical axis,
plot b with the logarithmic scale for
both vertical and horizontal axes

=
2b

2πk3

∫
dsn

sn

∫
dΩn

2πθ2
n−1,n

×Θn−1(sn)
1

θnk′θnk
Θn(k′)Θn(k); (52)

where the index (i) refers to the vector si. Taking into
account phase space restriction and dominating contribu-
tion of 1

θnk′ θnk
(see Appendix C) expression (52) can be

approximated as:

2b

2πk3

∫
dsn

sn

∫
dΩn

2πθ2
n−1,n

Θn−1(sn)
1

θnk′θnk
Θn(k′)Θn(k)

=
2b

2πk3 ln(
sn−1

k
)

1
θn−1,k′θn−1,k

Θn−1(k′)Θn−1(k)

×
∫ ∞

0
dxnxnJ0(xnθkk′)

∫ θn−1,k

Q0
k

dθnkJ0(xnθnk)

×
∫ θn−1,k′

Q0
k

dθnk′J0(xnθnk′). (53)

Scheme (53) can be repeated iteratively in (39). After
some transformations one obtains finally (for details see
Appendix C, D):

ρin
P (k,xT(P), 0)

=
2b

2π
k Θ(

Q0

θ
< k < P )

∫ θ

Q0
k

dθPk

×
∫ θ

Q0
k

dθPk′
1
2π

∫ 2π

0
dϕk′k J0(kθk′kxT )

I0

(√
8b ln( P

k )

{∫∞
0

dxxJ0(xθkk′ )
∫ θP k

Q0
k

daJ0(xa)
∫ θ

P k′
Q0
k

da′J0(xa′)

})

=
2b

2π
k Θ(

Q0

θ
< k < P )

∫ θ

Q0
k

dθPk

×
∫ θ

Q0
k

dθPk′
1
2π

∫ ∞

0

dθk′k θk′k

∆(θPk, θPk′ , θk′k)
J0(kθk′kxT )

×I0

(√
8b ln( P

k )

{∫ θP k
Q0
k

da
∫ θ

P k′
Q0
k

da′ 1
2π∆(a,a′,θ

k′k
)

})
; (54)

where θk′k denotes the angle between momenta k′, k,
which in the reference frame with the z-axis placed along
P direction takes the simple form:

θk′k =
√

θ2
Pk′ + θ2

Pk − 2 θPk′θPk cos(ϕk′k); (55)

ϕk′k denotes the azimuthal angle between kT and k′
T, and

∆(a, b, c) denotes the area of the triangle with sides a, b,
c. The numerical plot of (54) is presented in Fig. 8. There
is a limiting maximum value for xT = 0, as expected, and
for large xT the function has a power decrease with the
best fit exponent x−2.43

T . The result confirms our intuitive
analysis from Sect. 4.1. Density ρin

P (k,xT(P), 0) is concen-
trated around the P direction, stronger than ρin

P (k,kT)
from (49). The function oscillates around its power-law
profile. As already mentioned in Sect. 4.1., this effect is
due to the sharp cut-offs of form (9) which restrict the
integration space.

Comparing (54) with the single particle density in mo-
mentum space (49), we get the same dependence on the
energy k, as expected. The complicated emission term (see
Fig. 9):

2b ln
(

P

k

) {∫ ∞

0
dxxJ0(xθkk′)

×
∫ θP k

Q0
k

daJ0(xa)
∫ θP k′

Q0
k

da′J0(xa′)

}

=
∫

d3s
k3

s3 Ass(k,k′
T ; k,kT ) (56)

corresponds to the logarithm ln kT

Q0
of (49). In fact, after

integration of ρin
P (k,xT(P), 0) over d2xT one obtains the

same result as for (49) integrated over d2kT . The density
ρin

P (k,xT(P), 0) is positively defined, as well. Using the
Bessel function identities from Appendix D, (54) can be
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Fig. 8. Function ρin
P (k,xt, 0) from

(54) vs. xT ≡| xT | for parameters
as in Fig. 6. Plot a with the loga-
rithmic scale for the vertical axis,
plot b with the logarithmic scale for
both vertical and horizontal axes.
The power fit reads ρin

P (k,xT , 0) =
(Q0xT )−2.43 ∗ 0.00018 Q0

rewritten in the form:

ρin
P (k,xT(P), 0)

=
2b

2π
kΘ(

Q0

θ
< k < P )

∞∑
n=0

(2b)n

(n!)2
lnn

(
P

k

)

×
(∫ ∞

0
dx1x1 . . .

∫ ∞

0
dxnxn

) ∞∑
m1...mn=−∞

×
{∫ θ

Q0
k

dθPkJm1(x1θPk) . . . Jmn
(xnθPk)

×Jm1+...+mn
(xT kθPk)

n∏
i=1

∫ θP k

Q0
k

daiJ0(xiai)

}2

; (57)

which implies positive definitness. For xT = 0 ρin
P (k,xT(P),

0) reaches its maximal value, as expected. Diagramati-
cally, formula (54) represents the chain of independent
emission factors (56) transformed onto the transverse xT

plane by the Bessel factor of primary emission from the
parent P, namely J0(| kT − k′

T | xT ) (see Fig. 10). For
k = P expression (54) reduces to (51) with the dominance
of the primary emission, as expected.

5 Summary

We considered the QCD parton cascade created in e+e−
collision in the double logarithmic approximation. Using
the density matrix (DM) formalism [9], and restricting
ourselves to the terms leading in the double logarithmic
(DL) perturbative expansion for the quasi-diagonal limit
k′ ∼= k, we derived the explicit form of the inclusive sin-
gle particle density matrix din

P (k′, k) and single particle
density ρin

P (k,xT(P), 0) (see Fig. 8) in mixed coordinates
(kL ≈ k,xT ). The gluon density ρin

P (k,xT(P), 0) fulfills im-
portant physical requirements such as positive definitness
and proper normalization. It is concentrated around the
P direction, and shows the power law profile for large xT .

P

k

k k k k k

k’s

s ss∫ ∫s sd d3 3
3

3

T T

→→
=_ _ A ( ), ,

,
;

Fig. 9. Diagramatic representation of the term

2b ln
(

P
k

) {∫∞
0

dxxJ0(xθkk′)
∫ θP k

Q0
k

daJ0(xa)

× ∫ θP k′
Q0
k

da′J0(xa′)

}
=
∫

d3s k3

s3 Ass(k,k′
T ; k,kT );

The integration region lies in the overlap of conus Θs(k) and
conus Θs(k′)
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Fig. 10. Diagramatic representation of ρin
P (k,xt, 0) from (54)

as the chain of independent emission factors (56) transformed
onto the transverse xT plane by the Bessel factor of primary
emission from the parent P, namely J0(| kT − k′

T | xT )

Due to the cut-offs of the type (9) which restrict kinematic
regions, the density oscillates around its power law pro-
file. The above properties are consistent with qualitative
expectations.

The above results give a positive outlook for the fu-
ture. The simplified technique for calculating multiparti-
cle observables in DLA for the constant αS is ready. It
may allow one to investigate the structure of the QCD
cascade in a very comprehensive way: the exact form of a
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Wigner function already would give us clear experimental
predictions.

In order to improve the approach one needs to include
the momentum dependence of αS . The exact analysis of
applicability of the quasi-diagonal approximation
k′ ∼= k would be required, as well. There is also a problem
as to what extent the kinematical constraints character-
istic for a given QCD approach (in DLA they are of the
form (9)) influence the results obtained in the approach.
In other words, there is a problem how to separate the
effects of the kinematical restriction from the dynamical
content of QCD space. The explanation would require per-
forming an analysis similar to the presented above for LLA
and MLLA schemes, as well. The MLLA approximation
would be of special interest since it would incorporate the
energy conservation into the cascade.

Appendix A

In DLA there are four different tree graphs Ma, Mb, Mc,
Md, describing the production of two gluons. They are
defined on non-overlapping kinematic regions (see Fig. 3).
Emitted gluons are either angular (AO) or energy ordered
(EO).

Let us consider all the diagrams contributing to the
single particle density matrix dex

P (k′
1, k1). From the (AO)

and (EO) it follows that the interference between any two
different graphs will appear only if either energies ω1, ω

′
1 or

emission angles θ1P , θ1′P of produced gluons are strongly
ordered (Fig. 4).

This statement can be generalized for any m-particle
density matrix by induction. If we have m particles, and
(m-1) ones among them are “close” to each other, i.e. k1 ∼=
k′
1, . . . , km−1 ∼= k′

m−1, then the interference of the different
diagrams will take place only if either energies or angles
of km and k′

m are strongly ordered.

Appendix B

We shall find such terms in expansion (36) which dominate
in the double logarithmic perturbative limit of din

P (k′, k),
i.e. when b → 0 (b ∝ αS) and P → ∞, so that b ln P

Q0
→ 0

and b ln2 P
Q0

≈ 1 , and generate double logarithmic cor-
rections to the cross section. First let us introduce the
following notation:

din
P (k′, k) =

∞∑
n=0

an; (58)

where coefficients an describe the nth order iteration of
gS(k′, k) (36) in the form:

an = (2b)n

∫
ds1

s1

∫
dΩs1

2πθ2
Ps1

ΘP (s1)

. . .

∫
dsn

sn

∫
dΩsn

2πθ2
n−1,n

Θsn−1(sn) gsn(k′, k). (59)

The term a0 of the series (59) is equal to gP (k′, k). Ex-
panding it in the powers of coupling constant b, one ob-
tains the term of the first (lowest) order of b in the form:

a
(1)
0 ≡ g

(1)
P (k′, k)

=
2b

2π

1√
k3k′3

1
θPk′θPk

ΘP (k′) ΘP (k). (60)

Denoting the other terms by the symbol a
(>1)
0 ≡ g

(>1)
P (k′, k),

the term a0 from the series (59) can be rewritten as:

a0 = a
(1)
0 + a

(>1)
0 . (61)

We have checked that a
(1)
0 dominates in (61). To see this,

one should rewrite a0 as:

a0 ≡ gP (k′, k) = a
(1)
0 + a

(>1)
0 (62)

= a
(1)
0 f(k′, k;P ); (63)

where the exact form of f(k′, k;P ) follows from (37). For
b > 0 and P finite the f(k′, k;P ) vs | k − k′ | is a gauss-
like function with the maximum equal to 1 for k = k′ and
a non-zero minimal value. In the DL perturbative limit:
f(k′, k;P ) PT→ 1. Consequently, for any k, k′, P :

a0 ≤ a
(1)
0 , (64)

a0

a
(1)
0

PT→ 1. (65)

Since a
(1)
0 dominates in a0, we expect that the iterations of

a
(1)
0 will generate the leading contributions to the din

P (k′, k).
Let us introduce the notation:

d
in, (1)
P (k′, k) =

∞∑
n=0

a(1)
n , (66)

d
in, (>1)
P (k′, k) =

∞∑
n=0

a(>1)
n ; (67)

where a
(>1)
n and a

(1)
n represent the result of nth iteration

(59) of a
(>1)
0 and a

(1)
0 respectively. From (64) immediately

follows the relation:

an = a(1)
n + a(>1)

n ≤ a(1)
n . (68)

Since an ≥ 0, for the density matrix one obtains:

0 ≤ din
P (k′, k)

= d
in, (1)
P (k′, k)

+d
in, (>1)
P (k′, k) ≤ d

in, (1)
P (k′, k). (69)

In the limit | k−k′ | → 0 the density matrix din
P (k′, k) →

d
in, (1)
P (k′, k), and therefore:

din
P (k′, k)

d
in,(1)
P (k′, k)

PT→ 1. (70)
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For other (larger) values of | k − k′ | the contribution
of d

in,(1)
P (k′, k) generally need not to dominate. However,

taking into account the fact that the density matrix ap-
proach works only for the quasi-diagonal limit, we may
identify the quasi-diagonal region with the region of the
dominance of d

in,(1)
P (k′, k). Furthermore, since d

in,(>1)
P

(k, k) = 0, the d
in,(1)
P (k′, k) generates all DL corrections

to the cross section. Hence we finally arrive at the relation
(39).

Appendix C

To transform (52) into (53) we will apply the pole approx-
imation method ([11] and references therein). The phase
space restrictions Θn−1(n)Θn(k)Θn(k′) in (52), in partic-
ular the angular ordering (AO) θn−1,n � θn,k, θn−1,n �
θn,k′ make the the term 1

θnk′ θnk
be dominating in (52).

Applying the Bessel function identity [13]:∫
dΩn

2π
=

1
2π

∫
dθnk dθnk′ θnk θnk′

∆(θnk, θnk′ , θkk′)

=
∫ ∞

0
dxxJ0(xθk′k)

∫
dθnkθnk J0(xθnk)

×
∫

dθnk′θnk′ J0(xθnk′); (71)

where θk′k denotes the relative angle between vectors k,k′,
and ∆(θnk, θnk′ , θkk′) equals the area of triangle with sides
θk′k, θk′n, θkn, we may rewrite expression (52) in the form:

2b

2πk3

∫
dsn

sn

∫
dΩn

2πθ2
n−1,n

Θn−1(n)
1

θnk′θnk
Θn(k′)Θn(k)

=
2b

2πk3

∫
dsn

sn

∫ ∞

0
dxnxnJ0(xnθkk′)

×
∫

dθnkJ0(xnθnk)
∫

dθnk′J0(xnθnk′)

× 1
θ2

n−1,n

Θn−1(n)Θn(k′)Θn(k). (72)

Because of angular ordering the angle θn−1,n practically
does not change while integrating over angles θnk, θnk′ ,
and can be successfully approximated by the angle θn−1,k

(θn−1,k′). Applying all the integration restrictions explic-
itly, we arrive finally at the expression:

2b

2πk3

∫
dsn

sn

∫
dΩn

2πθ2
n−1,n

Θn−1(n)
1

θnk′θnk
Θn(k′)Θn(k)

=
2b

2πk3

1
θn−1,k′θn−1,k

Θn−1(k′)Θn−1(k)
∫ sn−1

k

dsn

sn

×
∫ ∞

0
dxnxnJ0(xnθkk′)

∫ θn−1,k

Q0
k

dθnkJ0(xnθnk)

×
∫ θn−1,k′

Q0
k

dθnk′J0(xnθnk′); (73)

which after trivial integration over sn gives identity (53).

Appendix D

For our purposes let us quote the following identities for
Bessel functions ([14] and references therein):

J0(xθk′k) =
∞∑

m=−∞
eim(ϕ−ϕ′)Jm(xθkP )Jm(xθk′P ), (74)

ei k x cos ϕ =
∞∑

m=−∞
imeimϕJm(k x), (75)

∫ ∞

0
dx xJ0(x a)J0(x a′) =

δ(a − a′)
a

; (76)

where θk′k denotes the relative angle between momenta
k′ k, which in the reference frame with the z-axis placed
along P direction takes form (55), and ϕk′k = ϕ−ϕ′, where
the angles ϕ, ϕ′ denote the azimuthal angles of vectors kT
and k′

T on the transversal plane respectively.
Now let us repeat the scheme (52)→ (53) iteratively in

(39). Then, after introducing the explicit form of Fourier
transform we arrive at the expression:

ρin
P (k,xT(P), 0) (77)

=
1

(2π)2

∫
d(kθkP ) kθkP

∫
d(kθkP ) kθkP

×
∫ 2π

0
dϕ

∫ 2π

0
dϕ′e−ikθkP xT cos ϕ+ikθk′P xT cos ϕ′

×
∞∑

n=0

(2b)n

n!
lnn

(
P

k

)
2b

2πk3

1
θPkθPk′

ΘP (k)ΘP (k′)

×
(∫ ∞

0
dx1x1J0(x1θk′k) . . .

∫ ∞

0
dxnxnJ0(xnθk′k)

)

×
{∫ θP k

Q0
k

da1J0(x1a1)
∫ θP k′

Q0
k

da′
1J0(x1a1′)

. . .

∫ θn−1,k

Q0
k

danJ0(xnan)
∫ θn−1,k′

Q0
k

da′
nJ0(xna′

n)

}
.

It looks still quite complicated, however one can notice
that the term in brackets:{∫ θP k

Q0
k

da1J0(x1a1)
∫ θP k′

Q0
k

da′
1J0(x1a1′)

. . .

∫ θn−1,k

Q0
k

danJ0(xnan)
∫ θn−1,k′

Q0
k

da′
nJ0(xna′

n)

}
; (78)

which contains integration of 2n Bessel functions, simpli-
fies significantly if one adds to (77) some extra off-diagonal
terms, which are equal to 0 in the quasi-diagonal limit.
Namely:

{ } DLA=
1
n!

∫ θP k

Q0
k

da1J0(x1a1)
∫ θP k′

Q0
k

da′
1J0(x1a1′)

. . .

∫ θP k

Q0
k

danJ0(xnan)
∫ θP k′

Q0
k

da′
nJ0(xna′

n). (79)
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Then expression (77) takes the simpler form:

ρin
P (k,xT(P), 0)

=
2b

2π
k Θ(

Q0

θ
< k < P )

1
(2π)2

×
∫ θ

Q0
k

dθkP

∫ θ

Q0
k

dθk′P

∫ 2π

0
dϕ

×
∫ 2π

0
dϕ′e−ikθkP xT cos ϕ+ikθk′P xT cos ϕ′

×
∞∑

n=0

(2b)n

(n!)2
lnn

(
P

k

){∫ ∞

0
dxxJ0(xθk′k)

×
∫ θP k

Q0
k

daJ0(xa)
∫ θP k′

Q0
k

da′J0(xa′)

}n

. (80)

Let us perform the integration over the angles ϕ, ϕ′. Re-
placing all the terms of the type J0(xθk′k) by their expan-
sions (74), expanding then Fourier transforms in terms of
(75), and performing the integration over ϕ, ϕ′ explicitly,
we arrive at (57).

However, the part of expression (57) containing Bessel
functions can be rewritten as:(

n∏
i=1

∞∑
mi=−∞

Jmi
(xiθPk)Jmi

(xiθPk′)

)

× Jm1+...+mn(xT kθPk)Jm1+...+mn
(xT kθPk′)

=
1
2π

∫ 2π

0
dϕk′k

(
n∏

i=1

J0(xiθk′k)

)
J0(xT kθk′k); (81)

where ϕk′k denotes the relative angle between the vectors
kT ,k′

T and
θk′k =

√
θ2

Pk′ + θ2
Pk − 2 θPk′θPk cos(ϕk′k), as usual. Sub-

stituting (81) into (57) finally we obtain (54).
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